Enhanced Photoacoustic Gas Analyser Response Time and Impact on Accuracy at Fast Ventilation Rates during Multiple Breath Washout
نویسندگان
چکیده
BACKGROUND The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. METHODS A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. RESULTS 10-90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was -0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range -3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. CONCLUSION The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus.
منابع مشابه
Validation of a photoacoustic gas analyser for the measurement of functional residual capacity using multiple-breath inert gas washout.
BACKGROUND The respiratory mass spectrometer is the current gold-standard technique for performing multiple-breath inert gas washout (MBW), but is expensive and lacks portability. A number of alternative techniques have recently been described. OBJECTIVES We aimed to validate, using an in vitro lung model, an open-circuit MBW system that utilises a portable photoacoustic gas analyser, with su...
متن کاملEvaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout
BACKGROUND A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of...
متن کاملMeasurement of functional residual capacity by modified multiple breath nitrogen washout for spontaneously breathing and mechanically ventilated patients.
BACKGROUND There is a need for a bedside functional residual capacity (FRC) measurement method that performs well in intensive care patients during many modes of ventilation including controlled, assisted, spontaneous, and mixed. We developed a modified multiple breath nitrogen washout method for FRC measurement that relies on end-tidal gas fractions and alveolar tidal volume measurements as in...
متن کاملA new double-tracer gas single-breath washout to assess early cystic fibrosis lung disease.
In cystic fibrosis (CF), tests for ventilation inhomogeneity are sensitive but not established for clinical routine. We assessed feasibility of a new double-tracer gas single-breath washout (SBW) in school-aged children with CF and control subjects, and compared SBW between groups and with multiple-breath nitrogen washout (MBNW). Three SBW and MBNW were performed in 118 children (66 with CF) us...
متن کاملMoment ratio analysis of multiple breath nitrogen washout in infants with lung disease.
Measurement of lung volumes at end expiratory level and assessment of ventilation inhomogeneity is important for respiratory management in infants with lung disease. This study compared multiple breath nitrogen washout was compared with body plethysmography to measure functional residual capacity in infants and assessed ventilation inhomogeneity using mean dilution numbers and alveolar based ga...
متن کامل